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1 Introduction

The Coleman-Mandula no-go theorem [1] is a powerful theorem that essentially states that, given
some reasonable assumptions, the only possible Lie algebra of symmetry generators consist of the
generators Pµ and Jµν of the Poincar group, and internal symmetry generators who commute
with the Poincar group. The theorem tells us, that all generators of internal symmetries (gauge
symmetries in the standard model) will commute with the generators of the Poincar group (space-
time symmetries). Another way of stating is “It is a theorem on the impossibility of combining
space-time and internal symmetries in any but a trivial way.”

What I have shown here is a filled out version of the proof of the theorem heavily taken from
Weinberg’s Supersymmetry [2].

1.1 The theorem

We will now directly cite the theorem from [1].
Theorem: Let G be a connected symmetry group of the S-matrix, and let the following five

conditions hold:

1. (Lorentz invariance.) G contains a subgroup locally isomorphic to P(Poincar algebra).

2. (Particle-finiteness.) All particle types correspond to positive-energy representations of
P. For any finite M, there are only a finite number of particle types with mass less than M.

3. (Weak elastic analyticity.) Elastic-scattering amplitudes are analytic functions of centerof-
mass energy, s, and invariant momentum transfer, t, in some neighborhood of the physical
region, except at normal thresholds.

4. (Occurrence of scattering.) Let |p〉 and |p′〉 be any two one-particle momentum eigen-
states, and let |pp′〉 be the two-particle state made from these. Then,

T |pp′〉 6= 0

except perhaps for certain isolated values of s. Phrased briefly, at almost all energies, any
two plane waves scatter.

5. (An ugly technical assumption.) The generators of G, considered as integral operators
in momentum space, have distributions for their kernels.

Then, G is locally isomorphic to the direct product of an internal symmetry group and the Poincar
group.

In this proof we will deal with symmetry generators. So given the above assumptions the
statement of the theorem reads that given symmetry generators B not in the Poincar group we
have,

[B,P] = 0 (1)

B commutes with all generators of P. We will use the same symbol for group and the algebra.
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1.2 Gameplan

Let G be a symmetry of S-matrix.

1. We begin with a subalgebra B of G called Bα which commutes with Pµ and show that this
is finite dimensional.

2. Being finite dimensional it can be decomposed as a direct sum of semi-simple lie algebra and
some number U(1)s. We show that the U(1) generators commute with Lorentz generators.

3. We take the remaining semi-simple compact Lie algebra and show that it also commutes
with Lorentz generator thus proving that B is an internal symmetry.

4. Finally we deal with A , the remaining part of G that does not commute with Pµ and show
that it is just the sum of some internal symmetry generator and Lorentz generator

1.3 S-matrix crash course

In scattering we consider physical states to be asymptotic ie in the distant past (t → −∞) are
denoted |in〉, and states in distant future (t → +∞) are denoted as |out〉. These states form a
complete set of states and they are orthonormal,

〈m, in|n, in〉 = 〈m, out|n, out〉 = δmn (2)

The matrix elements of S give the overlap between configurations of in and out states,

S(ψ → φ) = 〈φ, out|ψ, in〉 = 〈φ, out|S|ψ, out〉 = 〈φ, in|S|ψ, in〉 (3)

S satisfies the following relations,

S =
∑
m

|m, in〉〈m, out| (4)

S† =
∑
m

|m, out〉〈m, in| (5)

S†S = SS† = 1 (6)

S can be decomposed as,
S = 1 + iT (7)

here 1 refers to particles not interacting, while T is the connected part of S matrix. In terms of
invariant matrix element M we have,

〈p′m′, q′n′|iT |pm, qn〉 = (2π)4δ4(p′ + q′ − p− q)i(M(p′, q′; p, q))m′n′,mn (8)

So we have,

S(pm, qn→ p′m, q′n′)connected = (2π)4δ4(p′ + q′ − p− q)i(M(p′, q′; p, q))m′n′,mn (9)

1.4 Useful Identities

Here we will list down some useful identities used in this note. The relativistic normalization of
two particle states is given by,

〈p′q′|pq〉 = 2Ep2Eq(2π)3(δ3(p− p′)δ3(q− q′)δ3(p− q′)δ3(q− p′)) (10)

Non-relativistic one-particle identity operator,

(1)1-particle =

∫
d3p

(2π)3
|p〉 1

2Ep
〈p| (11)
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2 B
We begin by considering the sub-algebra B of G which consists of symmetry generator Bα that
commute with four-momentum Pµ.

[Bα, Pµ] = 0 (12)

Bα has a momentum-dependent representation bα when acting upon single particles states,

Bα|pm〉 = (bα(p))m′m|pm′〉 (13)

It acts on multi-particle state as a tensor product of one-particle states,

Bα|p,m; q, n; · · · 〉 = (bα(p))m′m|p,m′; q, n; · · · 〉+ (bα(q))n′n|p,m; q, n′; · · · 〉+ · · · (14)

The generators Bα obey a lie algebra,

[Bα, Bβ ] = iCγαβBγ (15)

[Bα, Bβ ]|p,m〉 = iCγαβ(bγ(p))m′m|p,m
′
〉 (16)

The matrix elements obey the same Lie algebra,

[bα(p), bβ(p)] = iCγαβbγ(p) (17)

The action of Bα on a two particle state is given as,

Bα|p,m; q, n〉 = (bα(p, q))m′n′ ,mn|p,m
′
; q, n

′
〉 (18)

the matrix representation of bα(p, q) acting on two particle state is defined as,

(bα(p, q))m′n′ ,mn = (bα(p))m′mδn′n + (bα(q))n′nδm′m (19)

So we have seen that Bα and bα(p) have a homeomorphism between them (since they satisfy the
same lie algebra). What we need is an isomorphism so that there is a one to one correspondence.
Why do we need this ? The answer is , any Lie algebra of finite Hermitian matrices (like
bα(p)) must be a direct sum of semi-simple Lie algebra and U(1) algebras [3]. If we
show the isomorphism between Bα and bα(p) then the Bα algebra would also have to be a direct
sum of semi-simple Lie algebra and U(1) algebras. So how do we show this isomorphism ?

If for some four momentum p, we find some coefficients cα such that,

cαbα(p) = 0 (20)

it means that the bα(p) are not linearly dependent. Showing cαbα(k) = 0 for all four-momentum
k is equivalent to the condition cαBα = 0, then bα and Bα share the same degeneracy and hence
are isomorphic.

Now if the Bα are symmetry generators, they must commute with the S-matrix.

[Bα, S] = 0 (21)

We consider an elastic 2-2 scattering (p, q → p′q′) with p + q = p′ + q′, with p, q, p′, q′ all on
mass-shell, p2 = p′2 and q2 = q′2. So for this scattering situation we have,

〈p′,m′; q′, n′|[Bα, S]|p,m; q, n〉 = 0 (22)

We will make use of the particle exchange property,

Bα|pm, qn〉 = (−1)spinBα|qn, pm〉 = (−1)spin(bα(q, p))n′m′,nm|qn′, pm′〉 (23)
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This gives us

(−1)spin(bα(q, p))m′n′,nm|qm′, pn′〉 = ((−1)spin)2(bα(q, p))m′n′,nm|pn′, qm′〉 (24)

This gives us,

Bα|pm, qn〉 = (bα(p, q))n′m′,mn|pn′, qm′〉 = (bα(q, p))m′n′,nm|pn′, qm′〉 (25)

Using (22),(8),(9) and (10) we have,

bα(p′, q′)M(p′, q′; p, q) =M(p′, q′; p, q)bα(p, q) (26)

This says that for two particle scattering that conserves the total momentum p+ q → p′ + q′, the
matrix representations of Bα are related by similarity transformation.

bα(p′q′) = S(p′, q′; p, q)bα(p, q)S−1(p′, q′; p, q) (27)

If we can find coefficients cα and four-momenta p, q such that,

cαbα(p, q) = 0 (28)

From this we can conclude that for any four momenta on the mass shell p, q, p′ and q′ which satisfy
p+ q → p′ + q′ , using similarity transform we can obtain,

cαbα(p′q′) = S(p′, q′; p, q)cαbα(p, q)S−1(p′, q′; p, q)

= 0 (29)

However this does not tell us, cαbα(p′) = cαbα(q′) = 0. This is the condition we need for
isomorphism. We get,

cα(bα(p′, q′)) = cα[(bα(p′))m′mδn′n + (bα(q′))n′nδm′m] = 0 (30)

so we get,
cα(bα(p′))m′mδn′n = −(bα(q′))n′nδm′m (31)

This tells us that cαbα(p′) and cαbα(q′) are proportional to identity matrix with opposite sign.
Considering the trace of two particle matrices,

Tr[bα(p′, q′)] =Tr[S(p′, q′; p, q)bα(p, q)S−1(p′, q′; p, q)]

= Tr[bα(p, q)] (32)

Trace does not change under similarity transformation.

Tr[(bα(p, q))m′n′ ,mn] = Tr[(bα(p))m′mδn′n + (bα(q))n′nδm′m]

= N(mq)tr[(bα(p))m′m] +N(mp)tr[(bα(p))n′n] (33)

N(m) is the multiplicity of particles with mass m. Now using (32) we can write,

N(mq)tr[(bα(p′))] +N(mp)tr[(bα(q′))] = N(mq)tr[(bα(p))] +N(mp)tr[(bα(p))] (34)

this should hold for all mass-shell momenta satisfying p + q → p′ + q′. We get the following
solution,

tr[bα(p)]

N(mp)
= aµαPµ (35)

here aµα are constants.
Now we define new symmetry generators from Bα by subtracting terms linear in Pµ. The

motivation here is to make the matrix representation traceless.

B#
α := Bα − aµαPµ (36)
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The action of this on one particle states is given as,

B#
α |pm〉 = ((bα(p))m′m − aµαpµδm′m)|pm′〉 (37)

≡ b#α (p)m′m|pm′〉 (38)

It can be easily checked from its definition that,

tr
[
(b#α (p))m′m

]
= 0 (39)

Since Pµ commutes with Bα, then it also commutes with B#
α ,

[Pµ, B
#
α ] = 0 (40)

Trace of commutator of traceless matrices is 0.

tr[b#α (p), b#β (p)] = itr[Cγαβ(b#γ (p) + aµγpµ)] = 0 (41)

This implies,
Cγαβa

µ
γ = 0 (42)

Using this we can show that B#
α satisfy a Lie algebra,

[B#
α , B

#
β ] = iCγαβB

#
γ (43)

It is also a generator of symmetry ie,

〈p′,m′; q′, n′|[B#
α , S]|p,m; q, n〉 = 0 (44)

Repeating the previous analysis we again find,

b#α (p′q′) = S(p′, q′; p, q)b#α (p, q)S−1(p′, q′; p, q) (45)

b#α (p, q) are matrices representing the action of B#
α on two particle states.

B#
α |p,m; q, n〉 = (b#α (p, q))m′n′ ,mn|p,m

′
; q, n

′
〉 (46)

where
(b#α (p, q))m′n′ ,mn = (b#α (p))m′mδn′n + (b#α (q))n′nδm′m (47)

If we have,
cαb#α (p, q) = 0 =⇒ cαb#α (p′, q′) = 0 (48)

This means that, since M(p′, q′; p, q) is a non-singular and analytic matrix, if we find coefficients
cα that satisfy the first criteria for some fixed momenta p and q, then the second condition is
implied for all p′ and q′ on mass shell and also satisfy p′ + q′ = p + q such that the similarity
transform (45) exists. From the second condition we get,

cα(b#α (p′))m′mδn′n = −cα(b#α (q′))n′nδm′m (49)

Since b#α are traceless , we have ,

cαb#α (p′) = cαb#α (q′) = 0 (50)

So what we have found is that, if we can find a set of ceofficients such that cαb#α (p, q) = 0 for some
fixed mass shell four -momentum p and q, then cαb#α (p′) = cαb#α (q′) = 0 for all p′ and q′ on the
same mass shell that satisfy four-momentum conservation p′ + q′ = p+ q.

cαb#α (p, q) = cαb#α (p′, q′) = 0 (51)
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from this we know that,

cαb#α (p) = cαb#α (q) = cαb#α (p′) = cαb#α (q′) = 0 (52)

From this and (51) we can deduce,
cαbα(p, q′) = 0 (53)

Using a similarity transform acting on states of total momentum p+ q′ we have,

cαbα(k, p+ q′ − k) = 0 (54)

This similarity transform only exists when both k and p+ q′ − k are both on mass shell. We first
look at the scattering p+ q → p′(= p+ q − q′), q′. For the collision to be elastic we have,

m2
p = (p+ q − q′)2 (55)

m2
q = q′2 (56)

These equations remove two degrees of freedom from q′. Next we consider scattering p, q′ →
k, (p+ q′ − k). From this we have,

m2
p = k2 (57)

which removes one degree of freedom from k. We also have,

m2
q = (p+ q′ − k)2 (58)

We still have enough freedom in q such that k is unconstrained. So we are free to choose k, the
three-vector component of k in any way we like. So we have shown that if for some fixed mass-shell
momenta p and q

cαb#α (p, q) = 0 (59)

then we have for almost all k,
cαb#α (k) = 0 (60)

This is unconstrained by kinematics because we are free to choose the 3-vector k.
Now suppose for some mass-shell momenta p and q that cαb#α (p, q) = 0. What happens if for

some k0 we have cαb#α (k0) 6= 0 ? If this was the case, a scattering process where particles with
four-momenta k0 and k and scatter into particles of four momenta k′ and k′′ will be forbidden
by the symmetry generated by B#

α since if the symmetry allowed such a scattering process , a
similarity transform would exist between b#α (k0, k) and b#α (p, q) where cαb#α (p, q) = 0. Our initial
assumption was that scattering amplitudes are analytic function of scattering angle at almost
all energies. What this means is that the scattering amplitude to a particle with momentum k0

cannot jump to zero under the symmetry imposed by B#
α in any analytic way, so the existence of

such a state is in contradiction with one of our assumptions. So from this we conclude that if we
have (59) then we have ,

cαb#α (k) = 0 (61)

for all k and hence,
cαB#

α = 0 (62)

Thus the mapping that takes B#
α into b#α (p, q) is therefore an isomorphism. From the definition

of B#
α it is clear that there is an isomorphism between Bα and b#α (p, q). Looking at the

action of B#
α on two particle states,

(b#α (p, q))m′n′ ,mn = (b#α (p))m′mδn′n + (b#α (q))n′nδm′m (63)

we see that for any given m,n the number of independent b#α (p, q) cannot exceed N(mp)N(mq),
hence it is finite dimensional. Due to the isomorphism it means that there are at most a finite
number of independent symmetry generators Bα. Thus we have shown that Bα must be finite
dimensional. Using theorem proved in chapter 15 of [3] , any Lie algebra of finite hermitian matrices
like bα can be written as direct sum of compact semi-simple Lie algebra and U(1) algebras. Because
of the isomorphism we will split Bα into the U(1)s (Bi) and semi-simple Lie algebra (Bα).
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3 Dealing with U(1)s

We know that B#
α commute with Pµ.

[Pµ, B
#
α ] = 0 (64)

From Lorentz algebra we also know that,

[J, Pµ] ∼ (linear combination of Pµ) (65)

Using the Jacobi identity we find,

[Pµ, [J,B
#
α ]] + [J, [B#

α , Pµ]] + [B#
α , [Pµ, J ]] = 0 (66)

This gives us,
[Pµ, [J,B

#
α ]] = 0 (67)

Since we have defined all generators that commute with Pµ consists of generators Bα, it follows
that [J,B#

α ] must then be a linear combination of B#
α .

[J,B#
α ] = cβαB

#
β (68)

We denote the generator of U(1) Lie algebra as B#
i in the algebra of B#

α . These U(1)
generators must commute with all of B#

α since it is a U(1) subalgebra of B. Thus we have,

[B#
i , [J,B

#
i ]] ∼ [B#

i , B
#
α +B#

i ] = [B#
i , B

#
i ] = 0 (69)

We use,
J |p,m; q, n〉 = σ(m,n)|p,m; q, n〉 (70)

and calculate the expectation value. We get,

0 =〈p,m; q, n|[B#
i , [J,B

#
i ]]|p,m; q, n〉

〈p,m; q, n|(2B#
i JB

#
i − JB

#
i B

#
i −B

#
i B

#
i J)|p,m; q, n〉

2〈p,m; q, n|(B#
i JB

#
i − JB

#
i B

#
i )|p,m; q, n〉

2(σ(m′, n′)− σ(m,n))|(b#i (p, q))m′n′,mn|2 (71)

here we have used the hermitian nature of J, J† = J . So we see that for any m,n,m′ and n′

for which σ(m′, n′) 6= σ(m,n), we have (b#i (p, q))m′n′,mn has to vanish. From the isomorphism of

b#i (p, q) and B#
i we have,

[B#
i , J ] = 0 (72)

There is a slight subtlety here, we have chosen J to be spatial rotations in the x-y plane (ie around
the z axis) so our J is basically Jz . By choosing appropriate directions of the 3-vectors p and q

we can conclude that [B#
i , J ] = 0 for all J(spatial rotations).

A similar analysis can be carried out for boost generators (which we will not do it here) which

again tells us that boost commutes with B#
i . Thus we have,

[B#
i , Jµν ] = 0 (73)

B#
i commutes with all generators of Lorentz group. This tells us that the matrix representation

b#i (p)n′n is independent of particle momentum and act as identity matrices on spin indices. We

conclude that B#
i are the generators of ordinary internal symmetry.
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4 Remaining semi-simple compact Lie algebra

Now we have to deal with the remaining B#
α , the generators of a compact lie algebra. For this we

go back to Bα. If these generators commute with Pµ, we have

[Pµ, Bα] = iCαµβBα = 0 (74)

so we have,
Cαµβ = 0 (75)

Under lorentz transformation we have,

Bα → U(Λ)BαU
−1(Λ) (76)

This should also commute with Pµ

[U(Λ)BαU
−1(Λ), Pµ] = 0 (77)

Since we stated in the beginning that all symmetry generators that commute with Pµ are spanned
by generators Bα we have,

U(Λ)BαU
−1(Λ) = Dβ

α(Λ)Bβ (78)

where D(Λ) is a representation of homogeneous Lorentz group. The Lorentz group has both
finite-dimensional and infinite-dimensional representations. However, it is non-compact, therefore
its finite-dimensional representations are not unitary (the generators are not Hermitian). The only
finite dimensional representation is the trivial one.

D(Λ) = 1 (79)

We get,
U(Λ)BαU

−1(Λ) = Dβ
α(Λ)Bβ = Bα (80)

Thus, we have

[Bα, U(Λ)] = 0 (81)

SoBα commutes with Lorentz group. So we have shown that all generator Bα of B commute
with Pµ (from definition of B) and J(as shown) and therefore with all generators of
Poincar group. Thus they are internal symmetries.

5 A - sub-algebra that does not commute with Pµ

Let us now look at possible symmetry generators that do not commute with Pµ. This is the subset
A of G. The action of a general symmetry generator, which we will call Aα, on a one-particle state
|p, n〉 of four momentum p is given as,

Aα|p, n〉 =

∫
d4p′(Aα(p′, p)n′n)|p′, n′〉 (82)

Being a symmetry generator Aα (also called the ’kernel’), would vanish unless both p′ and p are
on mass-shell. Now since Aα is a symmetry generator then so is,

Afα|p, n〉 =

∫
d4xexp(iP · x)Aαexp(−iP · x)f(x) (83)

f(x) is a function we can choose as we like. By acting this on a one particle state we find,∫
d4p′f̃(p′ − p)(Aα(p′, p))n′n|p′, n′〉 (84)
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here f̃(k) is the Fourier transform,

f̃(k) =

∫
d4xexp(ik · x)f(x) (85)

Now, let us suppose that there is a pair of mass shell four-momenta p1 and p1 +∆ with ∆ 6= 0. For
a two particle scattering process with four-momenta satisfying p1 + q1 → p2 + q2, then in general,
q1 + ∆,p2 + ∆ and q2 + ∆ will not be mass shell. If we take f̃(k) to vanish outside a sufficiently
small region around ∆, then Afα will annihilate all one-particle states with four-momentum q1, p2

and q2 but not the one-particle states with four-momentum p1.

Afα|p1, n〉 =

∫
d4p′1f̃(p′1 − p1)(Aα(p′1, p1))n′n|p′1, n′〉 = f̃(∆)(Aα(p1 + ∆, p1))n′n|p1 + ∆, n′〉 (86)

Afα|q1, n〉 =

∫
d4q′1f̃(q′1 − q1)(Aα(q′1, q1))n′n|q′1, n′〉 = f̃(∆)(Aα(q1 + ∆, q1))n′n|q1 + ∆, n′〉 (87)

Since Kernel vanishes whenever the momentum are not on mass shell we get,

Afα|q1, n〉 = Afα|p2, n〉 = Afα|q2, n〉 = 0 (88)

Afα|p1, n〉 6= 0 (89)

Now this is BAD, because we assumed that scattering occurs at almost all energies. With what
we have just shown, the symmetry generated by Afα forbids a process to have the kinematics
p1 + q1 → p2 + q2. This would mean that scattering does not occur at almost all energies ,
contradicting our initial assumption. This porblem can be averted if Aα commutes with four-
momentum Pµ,

Afα|p, n〉 =

∫
d4xexp(iP · x)Aαexp(−iP · x)f(x)|p, n〉 (90)

= (

∫
d4xf(x))Aα|p, n〉 ∝ Aα|p, n〉 (91)

So f̃(x) does not appear in action and cannot be appropriately chosen to cause problems. How-
ever we cannot use this option because if Aα commuted with Pµ then it would just be a linear
combination of Bα.

Instead of Aα commuting with Pµ we consider the kernel to be proportional to momentum
space delta function.

(Aα(p′, p))n′n = δ4(p′ − p)(a0
α(p′, p))n′n (92)

With this definition the action of Afα on one particle state,(82) becomes,

Afα|p, n〉 =

∫
d4p′f̃(p′ − p)δ4(p′ − p)(a0

α(p′, p))n′n|p′, n′〉 = f̃(0)(a0
α(p))n′n|p, n′〉 (93)

As we can see the arbitrary function f̃(0) is independent of the state it acts on. Thus if Afα does
not annihilate a state with momentum p, it would also not annihilate state with momentum p′. So
the symmetry generated by Aα would allow a scattering process with kinematics, p1 +q1 → p2 +q2

for all the momentums on mass shell. Now we utilize the last assumption of the Coleman-Mandula
theorem and consider the kernel Aα(p′, p) to be a distribution which means that it contains objects
proportional to delta functions and finite derivatives of delta functions. Thus with this in mind
we can give an expansion to the kernel with D derivatives,

(Aα(p′, p))n′n =(a0
α(p′, p))n′nδ

4(p′ − p) + (a1
α(p′, p))µ1

n′n

∂

∂p′µ1
δ4(p′ − p) (94)

+ · · ·+ (aDα (p′, p))µ1···µD

n′n

∂D

∂p′µ1 · · · ∂p′µD
δ4(p′ − p) (95)
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Now if i consider the first derivative term,

(a1
α(p′, p))µ1

n′n

∂

∂p′µ1
δ4(p′ − p) (96)

Its action on a one particle state gives(using (96) and (82)),

(Afα|p, n〉)|first derivative = −f̃(0)
∂

∂pµ1
((a1

α(p))µ1

n′n|p, n
′〉) (97)

Taking the first term and the first derivative and expanding a bit we have,

Afα|p, n〉 = f̃(0)

(
(a0
α(p))n′n)− ∂

∂pµ1
(a1
α(p))µ1

n′n − (a1
α(p′, p))µ1

n′n

∂

∂pµ1
|p, n′〉

)
+ higher derivative

(98)
Now we define,

(a′0α (p))n′n ≡ f̃(0)

(
(a0
α(p))n′n −

∂

∂pµ1
(a1
α(p))µ1

n′n

)
(99)

We can generalize this iteratively for the higher derivatives and then finally we obtain,

Afα|p, n〉 =

(
(a′0α (p))n′n + (a′1α (p))µ1

n′n

∂

∂pµ1
+ · · ·+ (a′Dα (p))µ1···µD

n′n

∂D

∂pµ1 · · · ∂pµD

)
|p, n′〉 (100)

Similarly we have,

Aα|p, n〉 =

(
(a′0α (p))n′n + (a′1α (p))µ1

n′n

∂

∂pµ1
+ · · ·+ (a′Dα (p))µ1···µD

n′n

∂D

∂pµ1 · · · ∂pµD

)
|p, n′〉 (101)

The coefficents here are in general different from the ones in Afα because of f̃(0), since Aα does
not depend on the choice of f̃(k).

Now since Aα are symmetry generators, it must contain Bα as a subset since Bα commute
with Pµ. Bα act as matrices on states (18) instead of polynomials (101). Therefore Bα can be
formed from D-fold commutator of momentum and Aα.

Bµ1µ2···µD
α = [Pmu1 , [Pµ2 , · · · [PµD , Aα]] · · · ] (102)

To show how this works , lets take Aα with D=1 acting on a one particle state,

Bµα|p, n〉 =[Pµ, Aα]|p, n〉

= [Pµ, (a0
α(p))n′n + (a1

α(p))νn′n

∂

∂pν
|p, n′〉

= −(a′1α (p))µn′n|p, n
′〉 (103)

So we have,
Bµα|p, n〉 = (bα(p))µn′n|p, n

′〉 = −(a′1α (p))µn′n|p, n
′〉 (104)

Now we need to show that Bµ1···µD
α commutes with momentum. Basically we are trying to show

(102) is the same as B. We can show that by taking commutation with momentum between states
of different momentum and then taking the limit p1 → p2 .

〈p2|[Bµ1
α , Pµ]|p1〉 = 〈p2|[[Pµ1 , Aα], Pµ]|p1〉 (105)

= −(p2 − p1)µ1(p2 − p1)µ〈p2|Aα|p1〉

= −(p2 − p1)µ1(p2 − p1)µ
∫
d4p′〈p2|Aα(p′, p1)|p′〉

= −(p2 − p1)µ1(p2 − p1)µ(a′0α (p1) + a1
α(p1)ν

∂

∂p′ν
)〈p2|p1〉

= −(p2 − p1)µ1(p2 − p1)µ(a′0α (p1) + a1
α(p1)ν

∂

∂p′ν
)δ4(p2 − p1)
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Here a′0α (p1) is as defined previously. Generalizing this we get,

〈p2|[[Pµ1 , [Pµ2 · · · [PµD , Aα]] · · · ], Pµ]|p1〉 = −(p2−p1)µ(p2−p1)µ1 · · · (p2−p1)µD 〈p2|Aα|p1〉 (106)

〈p2|Aα|p1〉 ∝ (a′0α (p1) + a1
α(p1)ν

∂

∂p′ν
+ · · ·+ a′Dα (p1)ν1···νD

∂D

∂p′ν1 · · · ∂p′νD
)δ4(p2 − p1) (107)

Combining the two we get,

〈p2|[Bµ1µ2···µD
α , Pµ]|p1〉 = −(p2 − p1)µ(p2 − p1)µ1 · · · (p2 − p1)µD 〈(a′0α (p1)

+ a1
α(p1)ν

∂

∂p′ν
+ · · ·+ a′Dα (p1)ν1···νD

∂D

∂p′ν1 · · · ∂p′νD
)δ4(p2 − p1) (108)

Because the delta function will take p2 → p1 this would cause the prefactors to vanish, thus
the commutation vanishes. This indicates that Bµ1µ2···µD

α is in B.
We know that action of Bα on one particle states can be written as,

(bα(p))n′n = (b#α )n′n + aµαpµδn′n (109)

This can be generalized for Bµ1µ2···µD
α as,

(bα(p))µ1···µD

n′n = (b#α )µ1···µD

n′n + aµµ1···µD
α pµδn′n (110)

From what we had shown before, (b#α )µ1···µD

n′n are momentum-independent, traceless Hermitian
generators of internal symmetry and aµµ1···µD

α are independent numerical constants. Both these
quantities are symmetric in µ1 · · ·µD because (B#

α )µ1···µD

n′n is, as is evident from (108).
Since Aα cannot take one-particle states off mass-shell we have,

[PµP
µ, Aα] = 0 (111)

For D≥1 this implies,

[Pµ1Pµ1
, [Pµ2 · · · [PµD , Aα]] · · · ] = 2Pµ1

Bµ1···µD
α = 0 (112)

The last equality follows from (111). So therefore we have,

pµ1b
µ1···µD
α (p) = pµ1((b#α )µ1···µD + aµµ1···µD

α pµ) = 0 (113)

the solution is,
((b#α )µ1···µD = 0 (114)

and
aµµ1···µD
α = −aµ1µ···µD

α (115)

Now we go over case by case. Lets first take D=0. For this we trivially have Aα = Bα, and
therefore Aα commutes with Pµ.

For D≥2 we have,

aµµ1µ2···µD
α = −aµ1µµ2···µD

α

= −aµ1µ2µ···µD
α

= aµ2µ1µ···µD
α

= aµ2µµ1···µD
α

= aµµ2µ1···µD
α

= −aµµ1µ2···µD
α (116)

Therefore,
aµµ1µ2···µD
α = 0 (117)

11



In (116) we got the antisymmetry in other indices by using (112) with different indices. Thus for
D≥2 we have,

Bµ1µ2···µD
α = 0 (118)

Now lets have a look at the interesting case of D=1. This tells us,

aµµ1
α = −aµ1µ

α (119)

For D=1 we have,
Bµα = [Pµ, Aα] = aµνα Pµ (120)

where aµν is antisymmetric in its indices. We see that the commutator of Aα with four-momentum
gives a linear combination of four momentum operator. This is reminiscent of ,

[Pµ, Jρσ] = −iηνρPσ + iηνσP ρ (121)

using (121) we can write,

[P ρ, Aα] = [P ρ,− i
2
aµνα Jµν +Bα] = aµνα Pµ (122)

This gives us,

Aα = − i
2
aµνα Jµν +Bα (123)

So we found that Aα is just the sum of some internal symmetry generator and Lorentz
generator.

Over the course of this note we have found, that the generator G consist only on generators of
Poincar group P and the generators of internal symmetry.

G = P ⊕ B (124)

6 Conclusion and Loopholes

With (124) we have proved that G is locally isomorphic to the direct product of an internal
symmetry group and the Poincar group. Thus the theorem of Coleman and Mandula which we
proved in this note demonstrates that the most general Lie algebra of symmetries of the S-matrix
contains Momentum generator Pµ , Lorentz generator Jµν and internal symmetry generator Bα.
These follow,

[Pµ, Bα] = 0 [Jµν , Bα] = 0 (125)

where Bα has a Lie algebra
[Bα, Bβ ] = iCγαβBγ (126)

Finally I will list down some loopholes of this no-go theorem.

1. For massless theories (p2 = 0), the argument of antisymmetry of aµµ1···µD
α does not work.

So we can have generators of conformal group which do mix with Poincar group.

2. This theorem does not capture the symmetries of action which do not appear in S-matrix.
For example discrete symmetries and spontaneously broken symmetries.

3. Supersymmetry avoids the restriction of Coleman-Mandula theorem by replacing commuta-
tors by anti-commutators, effectively enhancing the lie algebra to graded lie algebra [4].
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